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The problem of the motion of a particle (point mass) with a constant velocity modulus in a Newtonian central gravitational field 
is investigated by two methods: using Lagrange's equations with a multiplier, and using the equations of dynamics proposed earlier 
[1] for systems with non-holonomic constraints that are non-linear with respect to velocities, A phase diagram of the motion is 
constructed. The structure of the trajectories as a function of the initial conditions is investigated. Formulae in the form of 
quadratures are obtained for calculating the time of motion along the trajectory and the angular distance of flight. A qualitative 
analysis of the properties of improper integrals expressing the angular distance is presented. These properties are illustrated by 
the results of a numerical investigation. The possibility of carrying out elementary manoeuvres in the vicinity of an attracting 
centre are analysed. © 2003 Elsevier Science Ltd. All rights reserved. 

The problem of the motion of a particle (point mass) with a constant velocity modulus in a Newtonian 
central gravitational field is useful for studying the possibility of constructing different manoeuvres of 
spacecraft. Without dwelling on the methods for sustaining a constant absolute velocity of motion 
of a spacecraft, and assuming, for simplicity, that there is no change in its mass during a manoeuvre, 
the condition of constant velocity can be presented as a non-holonomic mechanical constraint on the 
motion of a particle that is non-linear with respect to the velocities. There was several versions of 
the procedure for obtaining the equations of dynamics for problems of this class. For example, on the 
assumption that the constraint for the problem in question is ideal, equations of motion with a Lagrange 
multiplier in spherical coordinates were obtained in [2]; however, their analytical solution was not 
constructed. 

A version of the general equations of dynamics in Lagrangian coordinates has been proposed [1] for 
systems with ideal non-holonomic constraints that are non-linear with respect to the velocities. This 
version does not contain Lagrange multipliers, and the procedure used to set up the equations of 
dynamics generalizes the procedure for compiling Voronets equations. In a number of cases (for example, 
non-linear analogues of Chaplygin systems and, in particular, the problem under examination), this 
version of the general equations of dynamics may prove to be preferable, which is demonstrated below. 

The problem of the motion of a particle with a constant velocity in a central field, unlike the standard 
problem of the passive motion of a particle in a central gravitational field, has no vector integral of the 
kinetic moment. Nor does it contain an integral of energy. In addition, as will be shown below, in the 
problem in question the direction of the kinetic moment vector is retained, and, by selecting a suitable 
system of coordinates, this problem can be reduced to an analogue of Chaplygin's system. As a result, 
it is possible to obtain an additional first integral and to carry out a fairly detailed qualitative analysis 
of the motion of a particle. 

In the present paper we show that to each value of velocity there corresponds a circular orbit separating 
the set of trajectories having an infinitely remote point from the set of trajectories contained entirely 
within the given orbit. The family of all trajectories is invariant under group of rotations about the 
attracting centre. There are trajectories that coil with an infinite number of turns into a circular orbit 
both from inside and from outside the orbit with respect to the attracting centre. Furthermore, there 
are trajectories with any finite number of turns about the attracting centre. If such an orbit comes from 
infinity, then, after completing a given number of turns, it again departs to infinity without attaining a 
circular orbit. Similarly, trajectories coming from the side of the attracting centre return again to the 
attracting centre without attaining a circular orbit. 
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1. THE G E N E R A L  E Q U A T I O N S  OF D Y N A M I C S  

Suppose that, in space R 3, the configuration of a system of N particles taking into account all geometric 
constraints (mechanical and servo constraints), is uniquely defined by the coordinates ql . . . . .  q~, 
n <~ 3N, such that the radius vectors of all particles of the system are expressed by the functions 
r v = rv(qb ... ,qn, t ) ( y  = 1 . . . . .  N). 

Let us assume that differential constraints 

(~i(ql . . . . .  %, 01 . . . . .  qn, t) = O, j = 1 . . . .  , m (1.1) 

are imposed on the system. Suppose that, as usual 

1 N N 3rv 
T = -  ~. mrv~, Qi = ~'. F ~ l - - ,  i =  1 ..... n 

2 ~=l ~=l 3qi 

are the kinetic energy and the generalized forces of the system, where m r is the mass, vv is the velocity 
of particles of the system and Fv represents active forces. Assuming that the constraints are ideal, it is 
possible to use the D'Alembert-Lagrange principle 

_ _ l ~ !  - ~ - Q i  [ 6 q i  = 0 
i=l dt(OOiJ Oqi J 

for any virtual displacements {&/i, i = 1 . . . .  , n} defined by the system of equations [3] 

t -q-z--. =0,  j = l  ..... m 
i=l oqi 

The equations of dynamics with Lagrange multipliers ~./will take the form 

dt iO[t i )  Oq i=Qi+ J-~,~ ~.j=-z---,Oq i i=1  ..... n (1.2) 

The multipliers ~,j are found using constraint equations (1.1). 
We will give the version of the equations of dynamics with excluded Lagrange multipliers [1, 4]. It 

will be assumed that the rank of the Jacobi matrix 

~(~1 ..... ~m) 

is equal to m. This means that the system of constraints isolates in velocity space 01, . . . ,  qn a surface 
of dimensionality n - m. We will represent it in the parametric form 

qi =qi(ql ..... qn,~! . . . . .  ~n-m), i = 1 ..... n 

with flee quasi-velocities hi, . . . , /~-m. The quasi-velocities h,(t) have corresponding quasi-coordinates 
rtk(t). 

We will adopt the standard rule of partial differentiation with respect to the quasi-coordinate rt, 

~'~k ~/~k' ~ k  i=I ~qi ~ltk i=1 ~qi ~ltk 

where f (ql  . . . . .  qn, t) is an arbitrary function. 
We will reduce the differential constraints to the form 

qp÷v=q°p÷v(t, ql ..... qn,ql ..... ilp), p = n - m ,  v = l  ..... m 

assuming that / t  i = qi (i = 1 . . . . .  p), and construct the functions 

T* = T*(ql ..... qn,ih ..... ilp,t), ~Op÷v(ql ..... qn,ql ..... itp,t) 

(1.4) 
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The function T* is obtained from the kinetic energy of the system T by replacing the velocities 
(lp+v (v = 1 . . . . .  m) with their expressions in terms of differential constraints, while the function ~,÷v 
are identical in form with the corresponding functions q0p÷v. However, the derivatives of the functions 
T* and q0p+v are taken taking into account rule (1.3) of differentiation with respect to the quasi- 
coordinate 

@qp+v _ @qp+v - 3q)p+v 
v=l ..... m, k=l ..... p 

~qk bqk bqk ' 

The partial derivatives of the functions T and q0p+v will, as before, be calculated as if all their arguments 
were independent. Then, the coordinates qi, defining the motion of the mechanical system, restricted 
by differential constraints, satisfy [1] the system of equations 

dt ~ ~)iti ) Oqi = Q; + Q.i, i=1 ..... p, 

where 

p = n - m  (1.5) 

v=i @Oi 

The system of equations (1.5) holds whatever constraints are imposed on the system. However, it is 
not complete. In order to close this system, it is necessary to add kinematic equations (1.4) to it. 

2. THE VECTOR EQUATION OF MOTION 
A NEWTONIAN CENTRAL FIELD 

We will take a stationary, right-oriented, orthonormalized frame of reference Oele2e3 with origin O at 
the attracting centre. The radius vector of a particle and its velocity vector will be denoted respectively 
by 

r = rle I + r2e 2 + r3e3, v = ~e I + r2e2 +/~3e3 

Then, the condition for the velocity modulus to be constant can be represented in the form 

v 2 =fi2 +/.~ +~32 =vg = const (2.1) 

The gravitational force F and its force function U have the forms 

F - g m r ,  U gm = = ; r=Vfi 2 + 4  + 4  
r a r 

respectively, g is the gravitational and m is the mass of the particle. 
Assuming constraint (2.1) to be ideal, we will examine the equation of motion with the Lagrange 

multiplier ~.. From Eq. (1.2), we obtain 

i:= ----~. r + ~.v (2.2) 
r ~ 

Consequently, the reaction of the ideal constraint is directed along the velocity vector. 
The multiplier ~. is easy to determine. Differentiating constraint equation (2.1), by virtue of the 

equation of motion, we obtain 

0 = vi' =-r-~-~ r" v+ ku~, k =  r-~0 r ' v  

Hence, Eq. (2.2) takes the form 

+ = - - - ~ ,  [v x (r x v)] 
r v ~  
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Multiplying both sides of this equation on the left by the vector r, we set up an equation for the change 
in the specific kinetic moment (r = r x v of a particle with respect to the attracting centre O 

l Y  
d = ) ~ r = ~ ( r . v )  
dt r3v 2 (2.3) 

It follows that the vector of the kinetic moment retains its orientation in absolute space, while the motion 
of the particles takes place in a stationary plane perpendicular to this vector. We multiply both sides 
of Eq. (2.3) scalarly by ¢r 

l d o  2 ~O 2 ( r  ~ 2 gtk r. v 

2 dt =r-~o2~rV) = 0  r~--o 2 '  i:= r 

We see that, if at any instant of time ¢~ = 0 (the velocity is directed along the radius vector), this equality 
will also hold at any instant of time. If ~ ,  0, the first integral 

o0 = - , ~0=a( to) ,  ro=r(to) (2.4) 

holds, expressing the dependence of the magnitude of the kinetic moment on the distance to the 
attracting centre. 

3. THE E Q U A T I O N  OF M O T I O N  IN P O L A R  C O O R D I N A T E S  

We will direct the basis vector e3 along vector ~r. Then, motion will occur in the plane Oele2, and the 
radius vector r of the particle will take the form 

r = r l e  1 ÷ r2e  2 

The polar coordinates (r, O) will be chosen such that 

r~ = r cosO, r2 = r sinO 

We will use Eqs (1.5), assuming ql = r and q2 = O. The kinetic energy, force function and constraint 
equation have the form 

V•o 2 _/.2 
T = 2  (r2 +r202), U =lain, O = - -  =~(r,r) 

r r 

(the plus sign in front of the root is chosen because the direction of the vector e 3 coincides with the 
direction of the vector ~r). After eliminating the quantity {} from the expression for the kinetic energy, 
we obtain T* = m02/2. Furthermore 

L et ai- ) OrJ 

We will construct the dynamic equation (1.5) 

+¢- -0 -+r  p-_- o (3.1) 

Multiplying this equation by ~ and transforming the expression in square brackets, we obtain 

at \ or ] r 

We will take into account that cr = r E {r = r ~ f l ~ -  ~2. Then, the latter equation reduces to the form 
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1 dt~ It/` 
a at r2v ~o 

and yields the first integral (2.4) already obtained above. 
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4. R E D U C T I O N  OF T H E  S O L U T I O N  TO Q U A D R A T U R E S  

We will first consider steady motions. The first of these is the motion of a particle along a ray emanating 
from the attracting centre. For such motion cr - 0. As already pointed out, this solution exists. To obtain 
it, it is sufficient for particle velocity to be collinear with the initial radius vector, and the particle will 
move at a constant velocity along the corresponding ray in a direction either away from the attracting 
centre or towards the attracting centre. 

The second steady motion is the motion of a particle in a circle with constant velocity o0. In order 
to obtain such a solution, we will consider Eq. (3.1). In it 

03([ ) -- /` (~.~_~ = ~ _  i.2 
a - 7 - -  ar  r 2 

Assuming now that in Eq. (3.1) ? -  0 (the direction of the velocity is perpendicular to the radius vector), 
we find the condition for the initial value of the radius to agree 

v0 
r0 

In other words, the initial value of the radius should be such that the velocity o0 is the first space velocity 
for it. Note that with such motion in a circle ~, - 0, and there is no reaction of the constraint. 

To investigate unsteady motions, we will use the first integral (2.4), which we will represent in the 
form 

/` , x= . .~ -~ ,  a f ( x ° )  (4.1) = f ( x )  f ( x ) = x e  -x, y . . . .  
a ' u 0 Uor 4 1 _ y g  

The region in which the variable x defined is expressed by the inequalities 

f ( x ) = x e - X  <~a, X > 0  (4.2) 

When x > 0, the function f(x) is positive and has a unique maximum f(1) = e -1. Furthermore, 
f(x) --+ 0 when x ~ 0 or x ~ ~ .  When x = 2, it has a point of inflection. 

When k ~ 0, the following formulae hold 

[/`l=vog(x), k =  I t ~ / ` ) g ( x ) ,  dO=-v--~°.e-X; g ( x ) = l l  f 2 ( x )  (4.3) 
Vor dx ar a 2 

Therefore, in the region in which the sign of ? is constant, we have the quadratures 

laa(sign/`) i dx "]0 e-Xdx 
t = to - U ~ xo x24a2,.  _x2e..Z ~ , o = o  0 - (s ignr)  ~a2 x2e_2X (4.4) 

5. Q U A L I T A T I V E  I N V E S T I G A T I O N  OF T H E  M O T I O N  

Solving Eq. (4.1) fory, we obtain in the (x, y) plane a family of curves with respect to the parameter a 
that form the phase diagram (Fig. 1) of the radial component of the motion 

[Yl = g(x) (5.1) 
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Y 
1' 

-1 
Fig. 1 

Depending on the magnitude of a, the following cases are possible. 

5.1. The case ae > 1: ef(xo) > ~ - y~ .  This means that the modulus of the radial component of the 
initial velocity is fairly high. The variable y does not vanish whatever the value of the radius. Due to 
the fact that f(x) > 0, the transverse component of the velocity does not vanish either. If b0 < 0, the 
particle moves towards the attracting centre andx ~ oo, but, ifb0 > 0, it moves away from the attracting 
centre and x ---> 0. In this case, the polar radius changes monotonically, and the angular velocity of the 
radius vector tends to zero. The radius vector of the particle may make several turns about the attracting 
centre. However, the number of turns will not be infinite. 

We will show this. Note that, since f(x) <~ e -1, we have 

l Yl ~>g(l), 1 I:1 ~>Vog(1) ;  . g ( 1 )  = ~/1 - ( a e )  -2 

We will consider some versions of this. 

5.1.1. The version/'0 > 0: the radius increases monotonically, andx decreases monotonically. Therefore 

o - 1 - e - z °  
O - d o =  u-.~°.e-Xdx<~X~ ° e-X d x < ~  

ar x agO) agO) 

5.1.2. The version k0 < 0: the radius decreases monotonically, andx increases monotonically. Therefore 

-- ~ i e-X° 0 0 o Uo e-Xdx<~ i e-~ dx< 
xo a [ s: [ x o agO) agO) 

5.2. The case ae = 1: ef(xo) = ~ l~ -y~ .  For such initial conditions, y vanishes whenx = 1, to which 
value the radius of the circular orbit of motion at velocity o0 corresponds. In Fig. 1, the separatrix passing 
through the point (1, 0) corresponds to this case. The separatrix intersects the Ox axis at an angle ~4.  
In order to demonstrate this, we will put z = x - 1. Then, from Eq. (5.1), for a = e -1 and small Izl, we 
have 

l Y I = ~1 - (1 + z)2e -2z =l z]3/1 - 2z - 2z 2 + o(z 2) 

We will investigate the motion along the separatrix. The following versions can be distinguished. 

5.2.1. The version 0 < x0 < 1, ~0 > 0. The initial point and the attracting centre are on different s i d e s  
of the circular orbit. The radial component of the velocity ~ and the radius r increase monotonically, 
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x ~ 0, and the particle departs to infinity, performing, perhaps, a finite number of turns about the 
attracting centre. In fact 

x0 x 0 

"O-Oo= I v--~°, e-~dx~< S v-'~.° e-Xdx> v-'9-.° (1-e-~°) 
x ar x aro aro 

(5.2) 

5.2.2. The version 0 < x0 < 1, r0 < 0. Then f ~ 0 monotonically, x ~ (1 - 0), and the radius decreases, 
and here r ~ ~t/t~. Thus, the trajectory approaches a circular orbit about the attracting centre. We will 
show that t ~ oo when x ~ (1 - 0). For this version the following formula holds [5] 

j c=v3x2g(x)  <_. 1 - x  h=  g 

h ' So.,/1-e( o - 1) 

Therefore 

i dx =hlnl-X___.~0 
t - t  o >~h 1 - x  1 - x  

Xo 

Consequently, when x ~ (1 - 0), the time of motion along the trajectory increases without limit, and 
the trajectory coils from the outside on to a circular orbit with an infinite number of turns about the 
attracting centre. 

5.2.3. The version 1 < x0 < +co, f0 < 0. The initial point and the attracting centre are on the same 
side of the circular orbit. The radial component of the velocity is negative. Therefore, the polar radius 
of the particle will decrease monotonically, the radial component of velocity, remaining negative, will 
increase in absolute magnitude, and the particle will approach the attracting centre without limit, and 
here the direction of the velocity will asymptotically tend towards the direction opposite to the direction 
of the radius vector. The radius vector of the particle can make only a finite number of turns about the 
attracting centre: 

6 0 o  J v°. e X d x  i v° -e-Xdx< u.° e - g °  (5.3) 
go a l r l  x0 air0[ alr0l  

5.2.4. The version 1 < x0 < +oo, f0 > 0. The initial point and attracting centre are on the same side 
of the circular orbit. The radial component of the velocity is positive. Therefore, the polar radius of 
the point will increase monotonically, approaching the radius of the circular orbit. Here, x ---r 1 + 0, 
and the radial component of the velocity will approach zero. For the case under examination 

~=vog(x),  k = -  
u~x2g(x) 

Here, at lease forx ~< 3, the following inequality holds [5] 

f ( x )  >t e -I [1 - (x - 1) 2 / 2] 

Therefore 

t _ to ~ ~__~ x~ ° dx = la lnX0-1 
UoXo x x - I  u3X2o x - 1  

Thus, the time taken to reach the value x = 1 proves to be infinite, and the particle moves in an orbit 
having an infinite number of turns and coiling into circular orbit from the side of the attracting centre. 

5.3. The case ae < 1: ef(xo) < ~f l ~ " -y6.  This means that the modulus of the initial radial component 
of the velocity is comparatively small. Now, the equation 

f(x) = xe -x = a (5.4) 
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has two real roots: xn < 1, xa > 1: f(x) = f(xa) = a, so that the region in which (4.2) is defined is the 
combination of two half-intervals (0, x~ ] u [ x~, +co). We will consider corresponding versions. 

5.3.1. The version 0 < x0 < xn < 1, f0 > 0. The initial point and the attracting centre are on different 
sides of the circular orbit. During motion, the particle moves away to infinity, the radial component of 
the velocity increases, and the number of turns of its trajectory in this case in finite, since limit (5.2) 
holds. 

5.3.2. The version 0 < x0 < x,~ < 1, f0 < 0. The initial point and the attracting centre lie on different 
sides of the circular orbit. During motion, the polar radius decreases, x ~ xn, and the radial velocity, 
being negative, increases monotonically to zero. The time taken to reach the value x = xn is finite, since 

f ( x n ) = a ,  f ' ( x ) = ( l - x ) e  -x>O, f " ( x ) = - ( 2 - x ) e  -~ <0 

and the following inequality holds [5] 

[a xT - Xo) 
,-,o  -vgx-- o : 

Furthermore, from formulae (4.3) we find 

~:=v0 f(x)f '(x)J~ v~ 2:  x ) f ' ( x )  =  -rx . (  (5.5) a2 g(x) 

In the present casef'(xn) > 0. Therefore, ~:(xn) > 0, and the velocity of the point, reaching a zero value 
when x = x,~, will become positive, while the polar radius will begin to increase without limit. 

Whenx ~ (xn - 0), the particle may make only a finite number of turns around the attracting centre. 
In fact 

x ag(x) 

5.3.3. The version Xa < x0 < +~o, 1:0 < 0. At the initial instant of time, the particle and attracting 
centre lie on the same side of the circular orbit. During motion, x ~ oo and the polar radius decreases 
monotonically, but the modulus of the radial component of the velocity increases monotonically, the 
direction of velocity tends asymptotically towards the direction opposite to the direction of radius vector, 
and the particle moves towards the attracting centre, making, perhaps, a finite number of turns around 
it, since estimate (5.3) holds. 

5.3.4. The versionxa < x0 < +~,, xa < 2, f0 > 0. At the initial instant of time, the particle and the 
attracting centre lie on the same side of the circular orbit. The polar radius initially increases, but 
x ~ xa, where the radial velocity vanishes. Since, when x < 2, the function f(x) is convex upwards, 
inequalities similar to the limits of version 5.3.2 hold. Consequently, the variable x reaches a value xa 
after a finite time. According to formula (5.5), ?'(x~) < 0. Therefore, the radial velocity of the particle, 
passing through zero, will become negative, the polar radius will begin to decrease, and the particle 
will approach without limit the attracting centre after no more than a finite number of turns around it 
in accordance with limit (5.3). 

5.3.5. The version x a < Xo < + ~ ,  xa >I 2, f0 > 0. At the initial instant of time, the particle the attracting 
centre lie on the same side of the circular orbit. The radius initially increases, and x ~ (xa + 0), where 
the radial component of the velocity vanishes. However, now the function f(x) is convex downwards. 
Consider the neighbourhood x~ < Xo < xa + 1. For it [5] 

t-to<<" 2~t ~. a 

and the time taken to reach the value x = xa is finite. Whenx = xa, we have ~'(xa) < 0. As in the previous 
case, the radial velocity, passing through zero, becomes negative, and the radius, tends to zero without 
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limit. The particle may perform no more than a finite number of turns around the attracting centre in 
accordance with estimate (5.3). 

The phase diagram in Fig. 1 contains two more straight lines: y = 1 and y = -1. Both correspond to 
motion along the radius vector at a constant velocity o0. On the liney - 1, the particle departs to infinity, 
and the line y = -1 the particle approaches the attracting centre without limit. 

6. SOME PROBLEMS OF M A N O E U V R I N G  

We will consider problems associated with the need to ensure the required boundary conditions. 

6.1. Injection into a near-circular orbit. Suppose the radius of the circular orbit, re, is given, and the 
initial polar radius of the point r0 ~ rc. As follows from an analysis of the results of Section 5.2, there 
is no phase trajectory leading from the position with radius r 0 to a circular orbit in a finite time. However, 
it is possible to indicate a trajectory which approaches infinitesimally closely to the prescribed circular 
orbit. We will supplement the initial conditions such that the initial point of motion on the phase diagram 
(Fig. 1) belongs to a branch of the separatrix leading to the point (1, 0). To do this we will put 

I I  
~- V 011 ~ e2 f2 i ' x0 )  Vo= ~ ,  Xo =v02--'~0 , /'0-- V0sign(xo-1), V0 

Then, obviously, a = f ( x o ) / ~  _y2 = e-l, and we obtain the solution of the problem. 

6.2. Attainment of  the prescribed value ofthepolar radius. Suppose two values of the polar radius, r0 
and rl, are given, and also the velocity o0. It is required to find the entire set of trajectories along which, 
starting from the point with polar radius r0, it is possible to reach the point with polar radius rl. 

The following values correspond to the polar radii 

_ ~t  __ ~t 

x 0 -v02----~0, x~ v02r ~ 

and we will use the phase diagram in Fig. 1. Depending on the values of x0 andxl, we will consider the 
following versions. 

6.2.1. The version 0 < xl < x0 < 1. It is obvious that, then, rl > r0 > re, and for any value of/0, from 
the half-interval (-V0, Oo], the polar radius rl is reached, and other values of b0 cannot serve as a solution. 
Here, the lower limit of the region of solutions i- 0 corresponds to the separatrix leading to the point 
(1.0) in Fig. 1. 

6.2.2. The version 0 < xl ~< 1 ~ x0. We have rl I> rc I> r0, and it is impossible to attain the value of 
the radius rl from the region of negative values of the variable y in Fig. 1. The solution of the problem 
is written in the form of the inequality 

Vo <,:o  <Vo 

The lower limit represents the point on the separatrix incident on the point (1, 0) from above. 

6.2.3. The version i < xl < Xo. In other words, rc > rl > ro. The value of the radius rl can be attained 
only from the region of positive values of the variable y. The solution of the problem is given by the 
inequality 

;-o 
in which the lower limit 

_ /. Y (xo) 

corresponds to the phase curve incident from above at the point (Xl, O) in Fig. 1. If the inequality 
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v,<eo<Vo 

is satisfied, the value rl will be reached twice: the first time on the ascending section of the trajectory, 
and the second time on the descending section. 

6.2.4. The version 0 < x0 < xl < 1. We have r0 > rl > r~. The polar radius rl can be reached only 
when 

The upper limit in this inequality corresponds to the phase curve intersecting the Ox axis "from below" 
at the point (xl, 0). If the inequality 

-v0 < < 

is satisfied, the value of the polar radius r 1 will be attained twice: first on the descending section and 
then on the ascending section of the trajectory. 

6.2.5. The version 0 < Xo ~ 1 <~ xl. We have r0 >I rc ~ rl. The polar radius rl is attained only if the 
condition 

-o0 <-v0 

is satisfied. The upper limit corresponds to the point on the separatrix incident at the point (1, 0) "from 
below". 

6.2.6. The version 1 < x0 < xl. Then rc > r0 > rl. The radius rl can be reached only if the inequality 

-vo <- o<Vo 

is satisfied. The upper limit corresponds to the separatrix incident at point (1, 0) in Fig. 1 "from above". 
The versions examined exhaust the solution of problem 6.2. 

6.3. Attainment of  the radius with the required radial velocity. The values of the polar radius r 0 and rl 
and also the velocity o0 are specified. It is required to find the trajectory for which, starting from the 
point with polar radius r~ the polar radius rl is reached with the prescribed radial velocity ~1. 

The solution of this problem can be obtained by the time inversion. Suppose the problem is solved, 
and tl is the instant at which the radius rl is reached. We will introduce the independent variables 

= tl - t. In inverse time ,, the radius rl corresponds to the instant,  = 0 with a prescribed initial radial 
component of the velocity f0 = -4. The polar radius ro becomes finite. It is now possible to use the results 
of the solution of problem 6.2, making the substitution Xo = la/(t~rl) and xl = ~(t~r0). A solution of 
the problem exists if, for the corresponding case of the position of the numbers x 0 and xl on the Ox axis 
in Fig. 1, the prescribed quantity r'0 falls in the region of the solution of problem 6.2. Then, r'0 in Fig. 1 
specifies the unique curve {y(x), x(x)}. For it we obtain 

yo = r~ =-~-LI a= f(Xo) 
U 0 V 0 ' ~l-Y20 

The points of the curve for which x = xl will yield the solution of the problem, which is given by the 
formulae 

I Yl I = g(xl  ), r{ = :l:v o I Yl I 

The sign of the solution is chosen depending on the branch of the curve of the phase diagram that 
gives the solution. After this, finally we have r0 = --r'l. 

Note that the quality tl is secondary in nature and is introduced only for convenience. Its actual value 
plays no part in the solution procedure. Note also that problem 6.3 may have no more than two solutions. 

6.4. Calculation of  the angular distance. Let us assume that the initial value and the final value of the 
polar radius, r0 and rl, the magnitude of the velocity o0, and the initial radial component of the velocity, 
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k0, are specified, and that [k 0 [ ~< o0. We will denote by O0 and 01 respectively the initial and final values 
of the angular coordinate O. It is required to find the angular distance 0 = O1 - O0 during motion at 
the specified velocity o from the initial point with radius r0 to the final point with radius rv 

We note to begin with that, if l e01 = ~ motion occurs along a ray emanating from the attracting 
centre, and then 0 = 0. Subsequently, we will assume that [/'0 [ < Uo. We will adopt the quantities 

_ ~ _ I a i" O f(x O) 
x0-02"-"~0, xl-u02--'~" 1 , y0 = - ,  a =  VO 41-y02 

and introduce the function 

~2 e-Xdx 
O(~l,~2,a)= I 4a  2 x2e_2X ~l 

We will examine the following versions. 

6.4.1. The version ae < 1, x0 ~< xn, Xl < xn. Motion can occur if the conditions 

(x z <~x o <~x~)&(y l ~ O )  (x o ~ x  l <~xn)&(y o <~0) 

are satisfied, and the angular distance is expressed by the formula [5] 

0 = Ox(xl,a)sign Yt - Ox(x0,a)sign Yo, Ox(x,a)  = O(x, xx,a) (6.1) 

6.4.2. The version ae < 1, Xo ~> xa, xl > xa. Motion occurs if the conditions 

(xa ~< Xo ~ xl ) & (Yl ~< O) (x a ~ x I ~ x o) & (Yo ~ O) 

are satisfied, and the angular distance is expressed by the formula [5] 

0 = Oa (x o, a) sign Yo - O~t (xl, a) sign Yl, O a (x, a) = O(xa, x, a) (6.2) 

6.4.3. The version ae = 1, x0 < 1, xl < 1. The representative point in Fig. I can only move along the 
separatrix. The region in which the solution can exist is expressed by the inequalities 

(x t~<x 0 < l ) & ( y  0 > 0 )  (x 0~<x I < l ) & ( y  0 < 0 )  

and the angular distance is calculated from the formula 

0 =[Oo(xo,a)-®o(xl,a)]signyo, a = e -l, Oo(x,a) =O(0,x,a)  (6.3) 

( i fae = 1, then O(x, a) ---) oo whenx ~ 1). 

6.4.4. The version ae = 1, x0 > 1, Xl > 1. As in the case of Section 6.4.3, the representative point 
only moves along the separatrix. The region in which the solution exists is expressed by the inequalities 

( l < x ~ < X o ) & ( y  0 > 0 )  ( l < x  o ~ x l ) & ( y  o<O) 

and the angular distance is calculated from the formula 

O=[O**(xl,a)-O**(xo,a)]sign y o, a = e  -i, O..(x,a)=O(x,**,a) (6.4) 

Despite the fact that the function O~(x, a) is an improper integral, for anyx ~ 1 it takes a finite value; 
here, Ooo(x, a) ---) ~ whenx  ~ 1. 

6.4.5. The version ae > 1. Motion of the ~epresentative point along the phase curve occurs without 
any singularities, and it possible to use any of the functions Oo(X, a) and O,,(x, a), which are connected 
by the obvious relation 
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O o ( x , a ) + O * * ( x , a )  = O(**,a) = O**(0, a) --- O(0 ,~ ,a)  

The region in which the solution exists is defined by the inequalities 

(x t~xo)&(y o>0), (x o~<xl)&(y o<0) 

and the angular distance is calculated from the formula 

0 = [O o (x o, a) - O 0 (x 1 , a)] sign Yo = [O** (x I , a) - O** (x o, a)] sign Yo 

This case exhausts the solution of problem 6.4. 

(6.5) 

7. P R O P E R T I E S  OF T H E  F U N C T I O N S  E X P R E S S I N G  
T H E  A N G U L A R  D I S T A N C E  

We will first consider the function On, defined by the final formula of  (6.1). In it, xn is the least root of 
Eq. (5.4), so that a = xae -xn. We will investigate the behaviour of the function On in a small neighbourhood 
of the point x. Suppose x = xn - y and y >/- 0. Then, we obtain 
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eYay 
°" =~-n ! ~l_(l_y/x~)2e2y 

We will assume that y ~ 1, and retain in the numerator and the radicand of the denominator only 
terms that are linear in y. After integration and changing to the initial variable x, we obtain 

O~ = x/xx(1 _ x,)  
(7.1) 

From this it is clear that, for a fixed value of x, the function On vanishes at the point xn = x and has a 
vertical tangent. 

The limit of function (7.1) when x --> 0 has the form 0,~ = ~-2-(1 + x~/3)~-I -xn.  At the point 
xn = 0 we obtain O~ = ~ -  and don */dxn = 42-/3. 

When xn ---> 1 the phase curves in Fig. 1 approach separatrices. Motion along the separatrix leading 
to the point (1, 0) is accompanied by an infinite increase in the angular distance. Therefore, but fixed 
x, the function On has a vertical asymptote x~ = 1 and tends to +co whenxn --4 1 - 0. 

Figure 2, in the region 0 < xn < 1, shows graphs of the function On obtained numerically. The 
parameter here is x, and the argument is xn. The value ofx for the separate graph corresponds to the 
point of intersection of the graph with the abscissa axis. 

The behaviour of the function Oa, defined by the final formula of (6.2), is similar in many ways to 
the behaviour of the function On. It can be investigated analytically by a similar methods. Figure 2, in 
the region xa > 1, shows a family of functions On found numerically. The parameter of the family is x. 
The value ofx corresponds to the intersection of the graph with the abscissa axis. 

The functions ®a and ®n examined above are convenient for calculating the distance in the case when 
1 1 a < e- .  When a = e- ,  the function O0(x, a), defined by the final formula of (6.3), should be used in 

the regionx < 1, and the function Ooo(x, a), defined by the final formula of (6.4), should be used in the 
region x > 1. Both functions of the variable x are positive and have a vertical asymptote when x ---> 1. 

when a > e -1, any of the functions O0 and O~ is defined in the entire region of variation ofx and is 
therefore suitable for calculating the angular distance. Figure 3 shows a family of functions O0, where 
the argument is the variable a and the parameter is x. Physically, this function expresses the angular 
distance between the infinitely remote point of the trajectory and the point with a radius corresponding 
to the given value of x. We see that this distance decreases monotonically as a increases. The curve 
corresponding to x = oo limits the region of variation of the function O0. The values of the function O~ 
can be found from the values of the function O0 using (6.5). 

This research was supported financially by the Russian Foundation for Basic Research (01-01-00079, 
96-15-96022) and the Federal Special-Purpose "Integration" Programme (1.6-329, A0097). 

R E F E R E N C E S  

1. GOLUBEV, Yu. E, Principles of Theoretical Mechanics. Izd. MGU, Moscow, 2000. 
2. DOBRONRAVOV, V. V., Principles of the Mechanics of Non-holonomic Systems. Vysshaya Shkola, Moscow, 1970. 
3. CHETAYEV, N. G., The Stability of Motion. Papers on Analytical Mechanics. Izd. Akad. Nauk, SSSR, Moscow, 1962. 
4. GOLUBEV, Yu. E, Mechanical systems with servo constraints. Ptikl. Mat. Mekh., 2001, 65, 2, 211-224. 
5. GOLUBEV, Yu. E, The motion of a point with a constant modulus of velocity in a Newtonian gravitational field. Preprint 

No. 58, Inst. Prikl. Mat., Ross. Akad. Nauk, Moscow, 2001. 

Translated by P.S,C. 


